Paper Reference(s)

6691/01 Edexcel GCE

Statistics S3

Advanced Level

Friday 18 June 2010 – Afternoon

Time: 1 hour 30 minutes

Materials required for examination Mathematical Formulae (Pink) **Items included with question papers** Nil

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulas stored in them.

Instructions to Candidates

In the boxes on the answer book, write the name of the examining body (Edexcel), your centre number, candidate number, the unit title (Statistics S3), the paper reference (6691), your surname, other name and signature.

Values from the statistical tables should be quoted in full. When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided. Full marks may be obtained for answers to ALL questions. This paper has 7 questions. The total mark for this paper is 75.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You must show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit.

H35397A This publication may only be reproduced in accordance with Edexcel Limited copyright policy. ©2010 Edexcel Limited 1. A report states that employees spend, on average, 80 minutes every working day on personal use of the Internet. A company takes a random sample of 100 employees and finds their mean personal Internet use is 83 minutes with a standard deviation of 15 minutes. The company's managing director claims that his employees spend more time on average on personal use of the Internet than the report states.

Test, at the 5% level of significance, the managing director's claim. State your hypotheses clearly.

- 2. Philip and James are racing car drivers. Philip's lap times, in seconds, are normally distributed with mean 90 and variance 9. James' lap times, in seconds, are normally distributed with mean 91 and variance 12. The lap times of Philip and James are independent. Before a race, they each take a qualifying lap.
 - (a) Find the probability that James' time for the qualifying lap is less than Philip's.

(4)

(5)

(7)

The race is made up of 60 laps. Assuming that they both start from the same starting line and lap times are independent,

- (b) find the probability that Philip beats James in the race by more than 2 minutes.
- 3. A woodwork teacher measures the width, w mm, of a board. The measured width, X mm, is normally distributed with mean w mm and standard deviation 0.5 mm.
 - (a) Find the probability that X is within 0.6 mm of w. (2)

The same board is measured 16 times and the results are recorded.

(b) Find the probability that the mean of these results is within 0.3 mm of w.

Given that the mean of these 16 measurements is 35.6 mm,

(c) find a 98% confidence interval for w.

(4)

(4)

4. A researcher claims that, at a river bend, the water gradually gets deeper as the distance from the inner bank increases. He measures the distance from the inner bank, b cm, and the depth of a river, s cm, at seven positions. The results are shown in the table below.

Position	A	В	С	D	Ε	F	G
Distance from inner bank <i>b</i> cm	100	200	300	400	500	600	700
Depth s cm	60	75	85	76	110	120	104

- (a) Calculate Spearman's rank correlation coefficient between *b* and *s*.
- (b) Stating your hypotheses clearly, test whether or not the data provides support for the researcher's claim. Use a 1% level of significance.

(4)

(6)

5. A random sample of 100 people were asked if their finances were worse, the same or better than this time last year. The sample was split according to their annual income and the results are shown in the table below.

Finances	Worse	Same	Better
Annual income			
Under £15 000	14	11	9
£15 000 and above	17	20	29

Test, at the 5% level of significance, whether or not the relative state of their finances is independent of their income range. State your hypotheses and show your working clearly.

(10)

6. A total of 228 items are collected from an archaeological site. The distance from the centre of the site is recorded for each item. The results are summarised in the table below.

Distance from the centre of the site (m)	0–1	1–2	2–4	4–6	6–9	9–12
Number of items	22	15	44	37	52	58

Test, at the 5% level of significance, whether or not the data can be modelled by a continuous uniform distribution. State your hypotheses clearly.

(12)

- 7. A large company surveyed its staff to investigate the awareness of company policy. The company employs 6000 full-time staff and 4000 part-time staff.
 - (a) Describe how a stratified sample of 200 staff could be taken.
 - (b) Explain an advantage of using a stratified sample rather than a simple random sample.

(1)

(3)

A random sample of 80 full-time staff and an independent random sample of 80 part-time staff were given a test of policy awareness. The results are summarised in the table below.

	Mean score (\bar{x})	Variance of scores (s^2)
Full-time staff	52	21
Part-time staff	50	19

(c) Stating your hypotheses clearly, test, at the 1% level of significance, whether or not the mean policy awareness scores for full-time and part-time staff are different.

(7)

(2)

- (*d*) Explain the significance of the Central Limit Theorem to the test in part (*c*).
- (e) State an assumption you have made in carrying out the test in part (c).

(1)

After all the staff had completed a training course the 80 full time staff and the 80 part-time staff were given another test of policy awareness. The value of the test statistic *z* was 2.53.

- (*f*) Comment on the awareness of company policy for the full-time and part-time staff in light of this result. Use a 1% level of significance.
- (g) Interpret your answers to part (c) and part (f).

(1)

(2)

TOTAL FOR PAPER: 75 MARKS

END

edexcel

June 2010 Statistics S3 6691 Mark Scheme

Question Number	Scheme	Marks							
Q1	$H_0: \mu = 80, H_1: \mu > 80$	B1,B1							
	$z = \frac{83 - 80}{15} = 2$	M1A1							
	$\sqrt{100}$								
	2 > 1.6449 (accept 1.645 or better)	B1							
	Reject H_0 or significant result or in the critical region Managing director's claim is supported.	M1 A1 7							
	1 st B1 for H _{0.} They must use μ not <i>x</i> , <i>p</i> , λ or \overline{x} etc 2 nd B1 for H ₁ (must be > 80). Same rules about μ .								
	1 st M1 for attempt at standardising using 83, 80 and $\frac{15}{\sqrt{100}}$. Can accept <u>+</u> .								
	May be implied by $z = \pm 2$ 1 st A1 for + 2 only								
	$ \begin{array}{lll} 3^{rd} B1 & \text{for } \pm 1.6449 \text{ seen (or probability of } 0.0228 \text{ or better}) \\ 2^{nd} M1 & \text{for a correct statement about "significance" or rejecting } H_0 (\text{or } H_1) \text{ based on their } z \text{ value and their } 1.6449 (\text{provided it is a recognizable critical value from normal tables}) \\ \text{or their probability } (< 0.5) \text{ and significance level of } 0.05. \\ \text{Condone their probability } > 0.5 \text{ compared with } 0.95 \text{ for the } 2^{nd} \text{ M1} \\ 2^{nd} \text{ A1 } & \text{for a correct contextualised comment. Must mention "director" and "claim" } \underline{\text{or "time"}} \end{array} $								
2 nd M1A1	and "use of Internet". No follow through. If no comparison or statement is made but a correct contextualised comment is given the M1 can b implied. If a comparison is made it must be <u>compatible</u> with statement otherwise M0 e.g. comparing 0.0228 with 1.6449 is M0 or comparing probability 0.9772 with 0.05 is M0 comparing -2 with - 1.6449 is OK provided a correct statement accompanies it								
Critical Region	They may find a critical region for \overline{X} : $\overline{X} > 80 + \frac{15}{\sqrt{100}} \times 1.6449 = awrt 82.5$ 1 st M1 for $80 + \frac{15}{\sqrt{100}} \times (z \text{ value})$ 3 rd B1 for 1.645 or better 1 st A1 for awrt 82.5 The rest of the marks are as per the scheme.								

Question Number	Scheme	Marks						
Q2 (a)	$[P \sim N(90,9) \text{ and } J \sim N(91,12)]$ $(J-P) \sim N(1,21)$ $P(J < P) = P(J-P < 0)$							
	$= P\left(Z < \frac{0-1}{\sqrt{21}}\right)$ $= P(Z < -0.2182)$	dM1						
	= 1 - 0.5871 = 0.4129 awrt (0.413 ~ 0.414) calculator (0.4136)	A1 (4)						
(b)	$X = (J_1 + J_2 + \dots + J_{60}) - (P_1 + P_2 + \dots + P_{60})$ $E(X) = 60 \times 91 - 60 \times 90 = 60$ [stated as $E(X) = 60$ or $X \sim N(60, \dots)$] $Var(X) = 60 \times 9 + 60 \times 12 = 1260$	M1 B1 A1						
	$P(X > 120) = P\left(Z > \frac{120 - 60}{\sqrt{1260}}\right)$ = P(Z > 1.69030)	M1						
	=1-0.9545=0.0455 awrt (0.0455)	A1 (5) 9						
(a)	1^{st} M1for attempting $J - P$ and $E(J - P)$ or $P - J$ and $E(P - J)$ 1^{st} A1for variance of 21 (Accept 9 + 12). Ignore any slip in μ here. 2^{nd} dM1for attempting the correct probability and standardising with their mean and This mark is dependent on previous M so if $J - P$ (or $P - J$) is not being used If their method is not crystal clear then they must be attempting $P(Z < -ve va)$ $P(Z > +ve value)$ i.e. their probability after standardisation should lead to a probability after standardisation should be after standardisation should be after standardisat	sd. l score M0 llue) or prob. < 0.5 ed.						
	The first 3 marks may be implied by a correct answer							
(b)	1 st M1 for a clear attempt to identify a correct form for <i>X</i> . This may be implied by convariance of 1260 B1 for E(<i>X</i>) = 60. Can be awarded even if they are using <i>X</i> = 60 <i>J</i> - 60 <i>P</i> . Allow <i>X</i> for a correct variance. If 1260 is given the M1 is scored by implication. 2 nd M1 for attempting a correct probability and standardising with 120 and their 60 and If the answer is incorrect a full expression must be seen following through the for M1 e.g. P $\left(Z > \frac{120 - \text{their } 60}{\sqrt{\text{their variance}}}\right)$. If using -60, should get P $\left(Z < \frac{-120 - \sqrt{\sqrt{1600}}}{\sqrt{1000}}\right)$.	orrect P - J and -60 and 1260 eir values 60 ariance						
Use of means	Attempt to use $\overline{J} - \overline{P}$ for 1 st M1, E($\overline{J} - \overline{P}$) = 1 for B1 and Var($\overline{J} - \overline{P}$) = 0.3. Then 2 nd M1 for standardisation with 2, and their 1 and 0.35	5 for A1						

Question Number	Scheme		Marks
Q3 (a)	$E \sim N(0, 0.5^2)$ or	$X \sim N(w, 0.5^2)$	
	$P(E < 0.6) = P(Z < \frac{0.6}{0.5})$ or = $P(Z < 1.2)$	$P(X - w < 0.6) = P(Z < \frac{0.6}{0.5})$	M1
	$= 2 \times 0.8849 - 1 = 0.7698$	awrt 0.770	A1 (2)
(b)	$\overline{E} \sim N\left(0, \frac{1}{64}\right)$ or \overline{X} .	$\sim N\left(w, \frac{0.5^2}{16}\right)$	(2) M1
	$P(\overline{E} < 0.3) = P(Z < \frac{0.3}{\frac{1}{8}}) $ or $P(\overline{X} < \frac{1}{8})$	$-w < 0.3) = P\left(Z < \frac{0.3}{\frac{1}{8}}\right)$	M1, A1
	= P(Z < 2.4) = 2 × 0.9918 - 1 = 0.9836	awrt 0.984	A1 (4)
(C)	$35.6 \pm 2.3263 \times \frac{1}{9}$		M1 B1
	o (35.3, 35.9)		A1,A1
			(4) 10
(a)	1 st M1 for identifying a correct probability (the	ey must have the 0.6) and attempting t	.0
	standardise. Need . This mark can b $1^{st} A1$ for awrt 0.770. NB an answer of 0.38	e given for 0.8849 - 0.1151 seen as fir 49 or 0.8849 scores M0A0 (since it im	nal answer. Iplies no)
	M1 may be implied	by a correct answer	
(b)	1 st M1 for a correct attempt to define \overline{E} or \overline{X} by	but must attempt $\frac{\sigma^2}{n}$. Condone labell	ing as E or X
	This mark may be implied by standardi 2^{nd} M1 for identifying a correct probability star	sation in the next line.	
	1^{st} A1 for correct standardisation as printed or	better	
	The M marks may be im	plied by a correct answer.	
Sum of	1 st M1 for correct attempt at suitable sum distr	ibution with correct variance (= 16×10^{-10}	$\left(\frac{1}{4}\right)$
16, not means	2 nd M1 for identifying a correct probability. M	ust have 4.8 and	-
	1 st A1 for correct standardisation i.e. need to s	see $\frac{4.8}{\sqrt{4}}$ or better	
(C)	M1 for $35.6 \pm z \times \frac{0.5}{\sqrt{16}}$		
	B1 for 2.3263 or better. Use of 2.33 will lo	ose this mark but can still score ³ / ₄	
	$\begin{array}{ccc} 1^{\text{T}} \text{A1} & \text{for awrt 35.3} \\ 2^{\text{nd}} \text{A1} & \text{for awrt 35.9} \end{array}$		

Question Number		Scheme									Mar	ks
Q4 (a)	$ \begin{array}{c} D\\ rz\\ D\\ rz\\ d\\ d \end{array} $	Distance ank Depth ank d l^2	1 1 0 0	2 2 0 0	3 4 1 1	4 3 1 1	5 6 1 1	6 7 1 1	7 5 2 4		M1 M1	
(b)	$\frac{d^2}{0} = 0 = 0$ $\sum d^2 = 8$ $r_s = 1 - \frac{6 \times 8}{7 \times 48}$ $= \frac{6}{7} = 0.857142$ $H_0: \rho = 0, H_1: \rho > 0$ Critical value at 1% level is 0.8929 $r_s < 0.8929 \text{ so not significant evidence to reject } H_0,$ The researcher's claim is not correct (at 1% level). $\frac{Or}{I} \text{ insufficient evidence for researcher's claim}$ $\frac{Or}{I} \text{ there is insufficient evidence that water gets deeper further from inner bank.}$									M1A1 M1 A1 B1 B1 M1 A1ft	(6) (4)	
(a) (b)	1 st M1 2 nd M1 3 rd M1 1 st A1 4 th M1 2 nd A1 1 st B1 2 nd B1 M1 A1ft	for an atte for attemp for attem for sum of for use of required. for awrt (for both h for cv of for a corr for a corr "distance Follow th Use of "a	empt to a pting d f pting \sum of 8 (or 1 f the corr (\pm) 0.857 hypothes 0.8929 ect state rrect con (from ba brough the association	rank the for their 1 $\int d^2$ (must 04 for re- rect form 7. Sign s es in terr (accept <u>-</u> ment rel textualis ank)" an heir r_s a on" is A	depths a canks. M st be usin everse ra nula with should co ms of ρ , \pm) ating the sed comm d "depth nd their o 0	gainst th lust be u ng ranks nking) their \sum orrespond H ₁ must ir r_s with nent. M (of wate cv (prov	$\int d^{2} d^$	ces ks. answer i tail and o tail and o but cv r ion "reso (cv <1)	s not cor use of 10 compatib must be s earcher"	rrect an e 4 should ble with such that and "cla	 expression get -0.8 their ran t cv <1 im" <u>or</u>	on is (57) king

Question Number		Scheme									
Q5	$ \begin{array}{r} \text{Income} \\ \hline \text{Under £1} \\ \hline \text{£15 000} \\ \hline \text{£15 000} \\ \end{array} $ $ \begin{array}{r} \text{H}_{0} : \text{Sta} \\ \text{H}_{1} : \text{Star} \\ \end{array} $ $ \begin{array}{r} O_{i} \\ \hline 14 \\ \hline 11 \\ 9 \\ \hline 17 \\ 20 \\ 29 \\ \end{array} $ $ \begin{array}{r} \sum (O_{i} \\ \\ v = (3 - \text{cv is 5.99} \\ 3.553 < 3 \\ \end{array} $	Finances 5 000 and above te of finances te of finances E_i 10.54 10.54 12.92 20.46 20.46 20.46 20.46 20.46 20.46 20.46 20.46 20.46 20.46 20.46 20.46 25.08 $-E_i)^2$ = 3.55% 1)(2 - 1) = 2 91 5.991 so insuf	34 66 100 ted) ted) 0 = 3.553 (a ificant	wrt 3.55)	M1 A1 B1 M1 A1 A1 B1 B1 B1 M1						
	There is	no evidence o	f association	between state	of finances ar	nd income.		A1			
	1 st M1 1 st A1 B1 2 nd M1 2 nd A1 3 rd M1 4 th A1	There is no evidence of association between state of finances and income. $1^{st} M1 \text{for some use of } \frac{\text{Row Total} \times \text{Col.Total}}{\text{Grand Total}} . \text{ May be implied by correct } E_i$ $1^{st} A1 \text{for all expected frequencies correct}$ B1 for both hypotheses. Must mention "state" or "finances" and "income" at lea Use of "relationship" or "correlation" or "connection" is B0 $2^{nd} M1 \text{for at least two correct terms (as in 3^{rd} or 4^{th} column) or correct expressions w 2^{nd} A1 \text{for all correct terms. May be implied by a correct answer.(2 dp or better-allow 3^{rd} M1 \text{for a correct statement linking their test statistic and their cv . Must be \chi^2 no 4^{th} A1 for a correct comment in context - must mention "state" or "finances" and "in condone "relationship" or "connection" here but not "correlation". No follow e.g. "There is no evidence of a relationship between finances and income"$									

Question Number	Scheme												
Q6	Distance from	n centre	0-	1	1.2	2-4	4-6	6-9	9-12				
	of site (r	m)	1		1	2 + 	+ 0 2	2	2		M1		
	No of arte	facts	22)	15	44	37	52	58		MI		
	$P(a \le X)$	$\langle h \rangle$	1	_	1	1	1	1	1		A1		
		<u> </u>	12	2	12	6	6	4	4		A 1		
	$228 \times P(a \le$	X < b)	19)	19	38	38	57	57	J	AI		
	Class	O_i	E_{i}	(($\frac{O_i - E_i)^2}{E_i}$	$\frac{O}{H}$	$\frac{1}{E_i}$						
	0-1	22	19	$\frac{9}{19} =$	= 0.4736	25.5	57						
	1-2	15	19	$\frac{16}{19} =$	= 0.8421	11.8	34				M1		
	2-4	44	38	$\frac{36}{38}$ =	= 0.9473	. 50.9	94						
	4-6	37	38	$\frac{1}{38} =$	= 0.0263	. 36.0)2						
	6-9	.9 52 57 $\frac{25}{57} = 0.4385$ 47.43				13		A1					
	9-12	58	57	$\frac{1}{57}$ =	= 0.0175	. 59.0)1						
	H ₀ : <u>continuo</u>	H_0 : <u>continuous uniform</u> distribution <u>is</u> a good fit B1											
	H ₁ : <u>continuo</u>	ous unif	<u>form</u> di	strib	ution <u>is no</u>	o <u>t</u> a good i	fit				13 71 4 1		
	$\sum \frac{(O_i - E_i)}{E_i}$	$(\frac{3}{10})^2 = \frac{31}{11}$	$\frac{13}{4} = 2.$	75 <u>c</u>	$\underline{\text{or}} \sum \frac{O_i^2}{E_i}$	-228 = 2	230.745	-228 =	(awrt	2.75)	dMIAI		
	v = 6 - 1 = 5				ŕ						B1		
	$\chi_5^2(0.05) = 1$	1.070						(ft their v	i.e. $\chi_{v}^{2}(0.0)$	05))	B1ft		
	2.75<11.070	, insuff	ficient	evide	ence to rej	ect H ₀					M1		
	Continuous u	uniforn	n distri	butic	on is a suit	able mode	el				A1		
											12		
	1 st M1 for c	calculat	ion of	at lea	ast 3 width	ns and atte	empting p	oroportions	/probs. <u>or</u>	for 1:2	:3 ratio seen		
	$1^{\text{st}} \text{A}1 \text{ for } \alpha$	correct	probat	oilitie	2S 1 f	•							
	2 A1 IOF a	all corre	ect exp		1 frequenc	ties							
	2^{nd} M1 for a	ttempt	ing $\frac{1}{2}$	$\frac{F}{F}$	$\frac{1}{E}$ or $\frac{O^2}{E}$,	, at least 3	correct e	expressions	or values	•			
	E $EFollow through their E, provided they are not all = 38$												
	3^{rd} A1 for a	l correc	t set of	f calc	$cs - 3^{rd}$ or 4	4 th colum	n. (2 dp o	or better and	d allow e.g	g. 0.94)		
	3^{rd} dM1 dep	endent	t on 2 ⁿ	^d M1	for attem	pting a co	orrect sum	or calcula	tion (must	t see at	least 3 terms		
	and	+) The fir	st thr	ee M	s and As	can be in	plied by	a test stat	istic of aw	rt 2.7	5		
	4 th M1 for a	a correct	ct state	ment	based on	their test $M0 \circ \sigma$ "	statistic (> 1) and the triangle of triangle of the tr	neir cv (> 1	3.8)			
	5 th A1 for a	a corre	ory sta	ment	suggestin	g that cor	ntinuous u	iniform mo	odel is suit	able. 1	No ft		

Ques Num	tion ber	Scheme	Mark	(S				
Q7	(a)	Label full time staff 1-6000, part time staff 1-4000	M1					
	. ,	Use random numbers to select	M1					
		Simple random sample of 120 full time staff and 80 part time staff	A1	(3)				
	(b)	Enables estimation of statistics / errors for each strata <u>or</u> "reduce variability" <u>or</u> "more representative" <u>or</u> "reflects population structure" NOT "more accurate"	B1	(1)				
	(c)	$H_0: \mu_f = \mu_p, H_1: \mu_f \neq \mu_p (\text{accept } \mu_1, \mu_2)$	B1					
		s.e. $= \sqrt{\frac{21}{80} + \frac{19}{80}}$, $z = \frac{52 - 50}{\sqrt{\frac{21}{80} + \frac{19}{80}}} = (2\sqrt{2})$	M1,M1					
		= 2.828 (awrt 2.83)	A1					
		Two tailed critical value $z = 2.5758$ (or prob of awrt 0.002 (<0.005) or 0.004 (<0.01))	B1					
		[2.828 > 2.5758 so] significant evidence to reject H ₀	dM1					
		There is evidence of a difference in policy awareness between full time and part time	A1ft	(7)				
	(d)	Can use mean full time and mean part time	B1	()				
	X-7	~ Normal	B1	(2)				
	(e)	Have assumed $s^2 = \sigma^2$ or variance of sample = variance of population	B1	(1)				
	(f)	2.53 < 2.5758, not significant or do not reject H ₀						
		So there is insufficient evidence of a difference in mean awareness	A1ft	(2)				
	(g)	Training course has closed the gap between full time staff and part time staff's mean awareness of company policy.	B1	(1)				
	(a)	 1st M1 for attempt at labelling full-time and part-time staff. One set of correct number 2nd M1 for mentioning use of random numbers 1st A1 for s.r.s. of 120 full-time and 80 part-time 	ers.	17				
	(c)	1 st M1 for attempt at s.e condone one number wrong . NB correct s.e. = $\sqrt{\frac{1}{2}}$						
		2 nd M1 for using their s.e. in correct formula for test statistic. Must be $\frac{\pm (52-50)}{\sqrt{\frac{p}{a}+\frac{r}{s}}}$						
		3 rd dM1 dep. on 2nd M1 for a correct statement based on their normal cv and their tes 2 nd A1 for correct comment in context. Must mention "scores" or " policy awareness of "staff". Award A0 for a one-tailed comment. Allow ft	t statistic 3" and typ	pes				
	(d)	1 st B1 for mention of mean(s) <u>or</u> use of \overline{X} , provided \overline{X} clearly refers to full-time of 2 nd B1 for stating that distribution can be assumed normal e.g. "mean score of the test is normally distributed" gets B1B1	or part-tii	me				
	(f)	M1 for correct statement (may be implied by correct contextualised comment) A1 for correct contextualised comment. Accept "no difference in mean scores".	Allow ft					
	(g)	B1 for correct comment in context that implies training was effective. This must be supported by their (c) and (f). Condone one-tailed comment he	re					